Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly.
نویسندگان
چکیده
Previous studies on the drug content of pelleted tubulin polymers suggest that peloruside A binds in the laulimalide site, which is distinct from the taxoid site. In a tubulin assembly system containing microtubule-associated proteins and GTP, however, peloruside A was significantly less active than laulimalide, inducing assembly in a manner that was most similar to sarcodictyins A and B. Because peloruside A thus far seems to be the only compound that mimics the action of laulimalide, we examined combinations of microtubule-stabilizing agents for synergistic effects on tubulin assembly. We found that peloruside A and laulimalide showed no synergism but that both compounds could act synergistically with a number of taxoid site agents [paclitaxel, epothilones A/B, discodermolide, dictyostatin, eleutherobin, the steroid derivative 17beta-acetoxy-2-ethoxy-6-oxo-B-homo-estra-1,3,5(10)-trien-3-ol, and cyclostreptin]. None of the taxoid site compounds showed any synergism with each other. From an initial study with peloruside A and cyclostreptin, we conclude that the synergism phenomenon derives, at least in part, from an apparent lowering of the tubulin critical concentration with drug combinations compared with single drugs. The apparent binding of peloruside A in the laulimalide site led us to attempt construction of a pharmacophore model based on superposition of an energy-minimized structure of peloruside A on the crystal structure of laulimalide. Although the different sizes of the macrocycles limited our ability to superimpose the two molecules, atom correspondences that were observed were consistent with the difficulty so far experienced in creation of fully active analogs of laulimalide.
منابع مشابه
βII-tubulin and βIII-tubulin mediate sensitivity to peloruside A and laulimalide, but not paclitaxel or vinblastine, in human ovarian carcinoma cells.
Increased abundance of βII- and βIII-tubulin isotypes in cancer cells confers resistance to vinca and taxoid site drugs; however, the role of these isotypes in the acquired resistance of cancer cells to non-vinca or non-taxoid site binding agents has not been described. Peloruside A (PLA) and laulimalide are the only known non-taxoid site microtubule-stabilizing agents. A human ovarian cancer c...
متن کاملPeloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines.
Peloruside A (peloruside), a microtubule-stabilizing agent from a marine sponge, is less susceptible than paclitaxel to multidrug resistance arising from overexpression of the P-glycoprotein efflux pump and is not affected by mutations that affect the taxoid binding site of beta-tubulin. In vitro studies with purified tubulin indicate that peloruside directly induces tubulin polymerization in t...
متن کاملPreclinical Development Peloruside- and Laulimalide-Resistant Human Ovarian Carcinoma Cells Have bI-Tubulin Mutations and Altered Expression of bII- and bIII-Tubulin Isotypes
Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside Aand laulimalide-resistant cell lines by selecting 1A9 human ovarian carcino...
متن کاملPreclinical Development bII-Tubulin and bIII-Tubulin Mediate Sensitivity to Peloruside A and Laulimalide, but not Paclitaxel or Vinblastine, in Human Ovarian Carcinoma Cells
Increased abundance of bIIand bIII-tubulin isotypes in cancer cells confers resistance to vinca and taxoid site drugs; however, the role of these isotypes in the acquired resistance of cancer cells to non-vinca or nontaxoid site binding agents has not been described. Peloruside A (PLA) and laulimalide are the only known non-taxoid site microtubule-stabilizing agents. A human ovarian cancer cell...
متن کاملPeloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes.
Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside A- and laulimalide-resistant cell lines by selecting 1A9 human ovarian carci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2006